www.childrenoftheearth.org

  

       

Home Button smallest.GIF (3864 bytes)

  

Back to Earth Issues Page

  

E C O - G L O S S A R Y
.  .  .  .

A  B  C  D  E  F  G  H   I   J  K  L  M

N  O  P  Q  R  S  T  U  V  W  X  Y  Z

.  .  .  .
 

 

A           A           A


acid rain






































Acids form when certain atmospheric gases (primarily carbon dioxide, sulfur dioxide, and nitrogen oxides) come in contact with water in the atmosphere or on the ground and are chemically converted to acidic substances. Oxidants play a major role in several of these acid-forming processes. Carbon dioxide dissolved in rain is converted to a weak acid (carbonic acid). Other gases, primarily oxides of sulfur and nitrogen, are converted to strong acids (sulfuric and nitric acids).

Although rain is naturally slightly acidic because of carbon dioxide, natural emissions of sulfur and nitrogen oxides, and certain organic acids, human activities can make it much more acidic. Occasional pH readings of well below 2.4 (the acidity of vinegar) have been reported in industrialized areas.

The principal natural phenomena that contribute acid-producing gases to the atmosphere are emissions from volcanoes and from biological processes that occur on the land, in wetlands, and in the oceans. The effects of acidic deposits have been detected in glacial ice thousands of years old in remote parts of the globe. Principal human sources are industrial and power-generating plants and transportation vehicles. The gases may be carried hundreds of miles in the atmosphere before they are converted to acids and deposited.

Since the industrial revolution, emissions of sulfur and nitrogen oxides to the atmosphere have increased. Industrial and energy-generating facilities that burn fossil fuels, primarily coal, are the principal sources of increased sulfur oxides. These sources, plus the transportation sector, are the major originators of increased nitrogen oxides.

The problem of acid rain not only has increased with population and industrial growth, it has become more widespread. The use of tall smokestacks to reduce local pollution has contributed to the spread of acid rain by releasing gases into regional atmospheric circulation. The same remote glaciers that provide evidence of natural variability in acidic deposition show, in their more recently formed layers, the increased deposition caused by human activity during the past half century.

To Top


air pollution

 

 

The existence in the air of substances in concentrations that are determined unacceptable. Contaminants in the air we breathe come mainly from manufacturing industries, electric power plants, automobiles, buses, and trucks.

To Top


aquifer

 

Layer of water-bearing permeable rock, sand, or gravel capable of providing significant amounts of water.

To Top


atmosphere

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The air surrounding the Earth, described as a series of shells or layers of different characteristics. The atmosphere, composed mainly of nitrogen and oxygen with traces of carbon dioxide, water vapor, and other gases, acts as a buffer between Earth and the sun. The layers, troposphere, stratosphere, mesosphere, thermosphere, and the exosphere, vary around the globe and in response to seasonal changes.

Troposphere stems from the Greek word tropos, which means turning or mixing. The troposphere is the lowest layer of the Earth's atmosphere, extending to a height of 8-15 km, depending on latitude. This region, constantly in motion, is the most dense layer of the atmosphere and the region that essentially contains all of Earth's weather. Molecules of nitrogen and oxygen compose the bulk of the troposphere.

The tropopause marks the limit of the troposphere and the beginning of the stratosphere. The temperature above the tropopause increases slowly with height up to about 50 km.

The stratosphere and stratopause stretch above the troposphere to a height of 50 km. It is a region of intense interactions among radiative, dynamical, and chemical processes, in which horizontal mixing of gaseous components proceeds much more rapidly that vertical mixing. The stratosphere is warmer than the upper troposphere, primarily because of a stratospheric ozone layer that absorbs solar ultraviolet energy.

The mesosphere, 50 to 80 km above the Earth, has diminished ozone concentration and radiative cooling becomes relatively more important. The temperature begins to decline again (as it does in the troposphere) with altitude. Temperatures in the upper mesosphere fall to -70 degrees to -140 degrees Celsius, depending upon latitude and season. Millions of meteors burn up daily in the mesosphere as a result of collisions with some of the billions of gas particles contained in that layer. The collisions create enough heat to burn the falling objects long before they reach the ground.

The stratosphere and mesosphere are referred to as the middle atmosphere. The mesopause, at an altitude of about 80 km, separates the mesosphere from the thermosphere--the outermost layer of the Earth's atmosphere.

The thermosphere, from the Greek thermo for heat, begins about 80 km above the Earth. At these high altitudes, the residual atmospheric gases sort into strata according to molecular mass. Thermospheric temperatures increase with altitude due to absorption of highly energetic solar radiation by the small amount of residual oxygen still present. Temperatures can rise to 2,000 degrees C. Radiation causes the scattered air particles in this layer to become charged electrically, enabling radio waves to bounce off and be received beyond the horizon. At the exosphere, beginning at 500 to 1,000 km above the Earth's surface, the atmosphere blends into space. The few particles of gas here can reach 4,500 degrees F (2,500 degrees C) during the day.

To Top

b


B           B           B


biome

 

 

Well-defined terrestrial environment (e.g., desert, tundra, or tropical forest). The complex of living organisms found in an ecological region.


To Top


biosphere

 

 

Part of the Earth system in which life can exist, between the outer portion of the geosphere and the inner portion of the atmosphere.


To Top


biota



The plant and animal life of a region or area.

To Top
c


C           C           C


carbon dioxide

 

 

 

 

 

A minor but very important component of the atmosphere, carbon dioxide traps infrared radiation. Atmospheric CO2 has increased about 25 percent since the early 1800s, with an estimated increase of 10 percent since 1958 (burning fossil fuels is the leading cause of increased CO2, deforestation the second major cause). The increased amounts of CO2 in the atmosphere enhance the greenhouse effect, blocking heat from escaping into space and contributing to the warming of Earth's lower atmosphere.

To Top


chlorofluorocarbon (CFC)

 

 

 

 

 

 

 

 

 

 

 

 

 

A family of compounds of chlorine, fluorine, and carbon, entirely of industrial origin. CFCs include refrigerants, propellants for spray cans (this usage is banned in the U.S., although some other countries permit it) and for blowing plastic-foam insulation, styrofoam packaging, and solvents for cleaning electronic circuit boards. The compounds' lifetimes vary over a wide range, exceeding 100 years in some cases.

CFCs' ability to destroy stratospheric ozone through catalytic cycles is contributing to the depletion of ozone worldwide. Because CFCs are such stable molecules, they do not react easily with other chemicals in the lower atmosphere. One of the few forces that can break up CFC molecules is ultraviolet radiation, however the ozone layer protects the CFCs from ultraviolet radiation in the lower atmosphere. CFC molecules are then able to migrate intact into the stratosphere, where the molecules are bombarded by ultraviolet rays, causing the CFCs to break up and release their chlorine atoms. The released chlorine atoms participate in ozone destruction, with a single atom of chlorine able to destroy ozone molecules over and over again.

International attention to CFCs resulted in a meeting of diplomats from around the world in Montreal in 1987. They forged a treaty that called for drastic reductions in the production of CFCs. In 1990, diplomats met in London and voted to significantly strengthen the Montreal Protocol by calling for a complete elimination of CFCs by the year 2000.

To Top
d


D           D           D


deforestation

 


 

 

Those practices or processes that result in the change of forested lands to non-forest uses. This is often cited as one of the major causes of the enhanced greenhouse effect for two reasons: 1) the burning or decomposition of the wood releases carbon dioxide; and 2) trees that once removed carbon dioxide from the atmosphere in the process of photosynthesis are no longer present and contributing to carbon storage.

To Top


desert biome

Desert biomes are the driest of all the biomes. In fact, the most important characteristic of a desert is that it receives very little rainfall. Most deserts receive less than 300 mm a year compared to rainforests, which receive over 2,000 mm. That means that the desert only gets 10 percent of the rain that a rainforest gets! The temperature in the desert can change drastically from day to night because the air is so dry that heat escapes rapidly at night. The daytime temperature averages 38°C while in some deserts it can get down to -4°C at night. The temperature also varies greatly depending on the location of the desert.

Since desert conditions are so severe, the plants that live there need to have adaptations to compensate for the lack of water. Some plants, such as cacti, store water in their stems and use it very slowly, while others like bushes conserve water by growing few leaves or by having large root systems to gather water or few leaves. Some desert plant species have a short life cycle of a few weeks that lasts only during periods of rain.

This definition is from NASA's Earth Observatory site: http://earthobservatory.nasa.gov/Laboratory/Biome/biodesert.html

To Top


desertification


The man-made or natural formation of desert from usable land.

To Top
e


E           E           E


ecology

 

Science dealing with the interrelationships between living organisms and their environments.

To Top


ecosystem


Any natural unit or entity including living and non-living parts that interact to produce a stable system through cyclic exchange of materials.

To Top


El Niņo














A warming of the surface waters of the eastern equatorial Pacific that occurs at irregular intervals of 2-7 years, usually lasting 1-2 years. Along the west coast of South America, southerly winds promote the upwelling of cold, nutrient-rich water that sustains large fish populations, that sustain abundant sea birds, whose droppings support the fertilizer industry. Near the end of each calendar year, a warm current of nutrient-pool tropical water replaces the cold, nutrient-rich surface water. Because this condition often occurs around Christmas, it was named El Niņo (Spanish for boy child, referring to the Christ child). In most years the warming last only a few weeks or a month, after which the weather patterns return to normal and fishing improves. However, when El Niņo conditions last for many months, more extensive ocean warming occurs and economic results can be disastrous. El Niņo has been linked to wetter, colder winters in the United States; drier, hotter summers in South America and Europe; and drought in Africa.

To Top


environment

 

 

The complex of physical, chemical, and biological factors in which a living organism or community exists.

To Top

f


F           F           F


food chain

 

A sequence of organisms, each of which uses the next lower member of the sequence as a food source.

To Top


fossil fuel

 

 

Any hydrocarbon deposit that can be burned for heat or power, such as petroleum, coal, and natural gas.

To Top

g


G           G           G


Gaia hypothesis


The hypothesis that the Earth's atmosphere, biosphere, and its living organisms behave as a single system striving to maintain a stability that is conductive to the existence of life.

To Top


geosphere

 

The physical elements of the Earth's surface crust, and interior.

To Top


glacier







A multi-year surplus accumulation of snowfall in excess of snowmelt on land and resulting in a mass of ice at least 0.1 km2 in area that shows some evidence of movement in response to gravity. A glacier may terminate on land or in water. Glacier ice is the largest reservoir of fresh water on Earth, and second only to the oceans as the largest reservoir of total water. Glaciers are found on every continent except Australia.

To Top


Global Change Research Program (GCRP)

 

 

 

 


 

The USGCRP is a government-wide program whose goal is 'to establish a scientific basis for national and international policy-making relating to natural and human-induced changes in the global Earth system.' The Earth Science Enterprise is NASA's central contribution to the U.S. Global Change Research Program.

The Global Change Research Program coordinates and guides the efforts of federal agencies. The program examines such questions as, is the Earth experiencing global warming? Is the depletion of the ozone layer expanding? How do we determine and understand the causes of global climate changes? Are they reversible? What are the implications for human needs and activities?

To Top


global warming

 

 

 

 

 


An increase in the near surface temperature of the Earth. Global warming has occurred in the distant past as the result of natural influences, but the term is most often used to refer to the warming predicted to occur as a result of increased emissions of greenhouse gases. Scientists generally agree that the Earth's surface has warmed by about 1 degree Fahrenheit in the past 140 years. The Intergovernmental Panel on Climate Change (IPCC) recently concluded that increased concentrations of greenhouse gases are causing an increase in the Earth's surface temperature and that increased concentrations of sulfate aerosols have led to relative cooling in some regions, generally over and downwind of heavily industrialized areas.

To Top


greenhouse effect












The warming of an atmosphere by its absorbing and reemitting infrared radiation while allowing shortwave radiation to pass on through.

Certain gaseous components of the atmosphere, called greenhouse gases, transmit the visible portion of solar radiation but absorb specific spectral bands of thermal radiation emitted by the Earth. The theory is that terrain absorbs radiation, heats up, and emits longer wavelength thermal radiation that is prevented from escaping into space by the blanket of carbon dioxide and other greenhouse gases in the atmosphere. As a result, the climate warms. Because atmospheric and oceanic circulations play a central role in the climate of the Earth, improving our knowledge about their interaction becomes essential.

To Top


greenhouse gas







 











A gaseous component of the atmosphere contributing to the greenhouse effect. Greenhouse gases are transparent to certain wavelengths of the sun's radiant energy, allowing them to penetrate deep into the atmosphere or all the way into the Earth's surface. Greenhouse gases and clouds prevent some of infrared radiation from escaping, trapping the heat near the Earth's surface where it warms the lower atmosphere. Alteration of this natural barrier of atmospheric gases can raise or lower the mean global temperature of the Earth.

Greenhouse gases include carbon dioxide, methane, nitrous oxide, chlorofluorocarbons, and water vapor. Carbon dioxide, methane, and nitrous oxide have significant natural and human sources while only industries produce chlorofluorocarbons. Water vapor has the largest greenhouse effect, but its concentration in the troposphere is determined within the climate system. Water vapor will increase in response to global warming, which in turn may further enhance global warming.

To Top

h


H           H           H


habitat


The area or region where a particular type of plant or animal lives and grows.

To Top


hemisphere

 

Half of the Earth, usually conceived as resulting from the division of the globe into two equal parts, north and south or east and west.

To Top


hurricanes

















Severe tropical storms whose winds exceed 74 mph. Hurricanes originate over the tropical and subtropical North Atlantic and North Pacific oceans, where there is high humidity and light wind. These conditions prevail mostly in the summer and early fall. Since hurricanes can take days or even weeks to form, time is usually available for preventive or protective measures.

From space, hurricanes look like giant pinwheels, their winds circulating around an eye that is between 5 and 25 miles in diameter. The eye remains calm with light winds and often a clear sky.

Hurricanes may move as fast as 50 mph, and can become incredibly destructive when they hit land. Although hurricanes lose power rapidly as soon as they leave the ocean, they can cause high waves and tides up to 25 feet above normal. Waves and heavy flooding cause the most deaths during a hurricane. The strongest hurricanes can cause tornadoes.

To Top


hydrosphere


The totality of water encompassing the Earth, comprising all the bodies of water, ice, and water vapor in the atmosphere.

To Top

i


I           I           I


infrared radiation (IR)
















Infrared is electromagnetic radiation whose wavelength spans the region from about 0.7 to 1000 micrometers (longer than visible radiation, shorter than microwave radiation). Remote sensing instruments work by sensing radiation that is naturally emitted or reflected by the Earth's surface or from the atmosphere, or by sensing signals transmitted from a satellite and reflected back to it. In the visible and near-infrared regions, surface chemical composition, vegetation cover, and biological properties of surface matter can be measured. In the mid-infrared region, geological formations can be detected due to the absorption properties related to the structure of silicates. In the far infrared, emissions from the Earth's atmosphere and surface offer information about atmospheric and surface temperatures and water vapor and other trace constituents in the atmosphere. Since IR data are based on temperatures rather than visible radiation, the data may be obtained day or night.

To Top

j


J           J           J


jet stream









Rivers of high-speed air in the atmosphere. Jet streams form along the boundaries of global air masses where there is a significant difference in atmospheric temperature. The jet streams may be several hundred miles across and 1-2 miles deep at an altitude of 8-12 miles. They generally move west to east, and are strongest in the winter with core wind speeds as high as 250 mph. Changes in the jet stream indicate changes in the motion of the atmosphere and weather.

To Top


Joint Education Initiative (JEI)






The JEI project was developed by USGS, NOAA, NASA, industry, and teachers to enable teachers and students to explore the massive quantities of Earth science data published by the U.S. Government on CD-ROM. JEI encourages a research and analysis approach to science education.

To Top

k


K           K           K


To Top

l


L           L           L


lightning













A discharge of atmospheric electricity accompanied by a vivid flash of light. During thunderstorms, static electricity builds up within the clouds. A positive charge builds in the upper part of the cloud, while a large negative charge builds in the lower portion. When the difference between the positive and negative charges becomes great, the electrical charge jumps from one area to another, creating a lightning bolt. Most lightning bolts strike from one cloud to another, but they also can strike the ground. These bolts occur when positive charges build up on the ground. A negative charge called the 'faintly luminous streamer' or 'leader' flows from the cloud toward the ground. Then a positively charged leader, called the return stroke, leaves the ground and runs into the cloud. What is seen as a lightning bolt is actually a series of downward-striking leaders and upward-striking return strokes, all taking place in less than a second.

To Top


lithosphere







The component of the Earth's surface comprising the rock, soil, and sediments. It is a relatively passive component of the climate system, and its physical characteristics are treated as fixed elements in the determination of climate.

To Top

m


M           M           M


meteorology

Study of the atmosphere and its phenomena.

To Top


Methane (CH4)










A hydrocarbon that is a greenhouse gas. Methane is produced through anaerobic (without oxygen) decomposition of waste in landfills, animal digestion, decomposition of animal wastes, production and distribution of natural gas and oil, coal production , and incomplete fossil fuel combustion. The atmospheric concentration of methane has been shown to be increasing at a rate of about 0.6% per year and the concentration of about 1.7 parts per million by volume (ppmv) is more than twice its preindustrial value. However, the rate of increase of methane in the atmosphere may be stabilizing.

To Top


monsoon




















A name for seasonal winds, first applied to the winds over the Arabian Sea that blow for six months from the northeast and for six months from the southwest. The term has been extended to similar winds in other parts of the world (i.e., the prevailing west to northwest winds of summer in Europe have been called the European monsoon). The primary cause for these seasonal winds is the much greater annual variation of temperature over large land areas compared with neighboring ocean surfaces, causing an excess of pressure over the continents in winter and a deficit in summer, but other factors, such as topography of the land, also have an effect. The monsoons are strongest in the southern and eastern sides of Asia, but also occur along the coasts of tropical regions wherever the planetary circulation is not strong enough to inhibit them. The monsoon climate can be described as a long winter-spring dry season, which includes a cold season followed by a short hot season just preceding the rains; a summer and early autumn rainy season, which is generally very wet but may vary greatly from year to year; and a secondary warming immediately after the rainy season.

To Top


Mount Pinatubo









A volcano in the Philippine Islands that erupted in 1991. The eruption of Mount Pinatubo ejected enough particulate and sulfate aerosol matter into the atmosphere to block some of the incoming solar radiation from reaching Earth's atmosphere. This effectively cooled the planet from 1992 to 1994, masking the warming that had been occurring for most of the 1980s and 1990s.

To Top

n


N           N           N


nitrogen oxides (NOx)




Gases consisting of one molecule of nitrogen and varying numbers of oxygen molecules. Nitrogen oxides are produced in the emissions of vehicle exhausts and from power stations. In the atmosphere, nitrogen oxides can contribute to formation of photochemical ozone (smog), can impair visibility, and have health consequences; they are thus considered pollutants.

To Top


nitrous oxide (N2O)






A powerful greenhouse gas with a global warming potential of 320. Major sources of nitrous oxide include soil cultivation practices, especially the use of commercial and organic fertilizers, fossil fuel combustion, nitric acid production, and biomass burning.

To Top

o


O           O           O


ozone


























An almost colorless, gaseous form of oxygen with an odor similar to weak chlorine. A relatively unstable compound of three atoms of oxygen, ozone constitutes--on the average--less than one part per million (ppm) of the gases in the atmosphere (peak ozone concentration in the stratosphere can get as high as 10 ppm). Yet ozone in the stratosphere absorbs nearly all of the biologically damaging solar ultraviolet radiation before it reaches the Earth's surface where it can cause skin cancer, cataracts, and immune deficiencies, and can harm crops and aquatic ecosystems. See ozone layer.

Ozone is produced naturally in the middle and upper stratosphere through dissociation of molecular oxygen by sunlight. In the absence of chemical species produced by human activity, a number of competing chemical reactions among naturally occurring species--primarily atomic oxygen, molecular oxygen, and oxides of hydrogen and nitrogen--maintains the proper ozone balance. In the present-day stratosphere, this natural balance has been altered, particularly by the introduction of man-made chlorofluorocarbons. If the ozone decreases, the ultraviolet radiation at the Earth's surface will increase. See greenhouse gas.

Tropospheric ozone is a by-product of the photochemical (light-induced) processes associated with air pollution.  Ozone in the troposphere can damage plants and humans.

To Top


ozone hole



















A large area of intense stratospheric ozone depletion over the Antarctic continent that typically occurs annually between late August and early October, and generally ends in mid-November. This severe ozone thinning has increased conspicuously since the late seventies and early eighties. This phenomenon is the result of chemical mechanisms initiated by man-made chlorofluorocarbons (see CFCs). Continued buildup of CFCs is expected to lead to additional ozone loss worldwide.

The thinning is focused in the Antarctic because of particular meteorological conditions there. During Austral spring (September and October in the Southern Hemisphere) a belt of stratospheric winds encircles Antarctica essentially isolating the cold stratospheric air there from the warmer air of the middle latitudes. The frigid air permits the formation of ice clouds that facilitate chemical interactions among nitrogen, hydrogen, and chlorine (elevated from CFCs) atoms, the end product of which is the destruction of ozone.

To Top


ozone layer











The layer of ozone that begins approximately 15 km above Earth and thins to an almost negligible amount at about 50 km, shields the Earth from harmful ultraviolet radiation from the sun. The highest natural concentration of ozone (approximately 10 parts per million by volume) occurs in the stratosphere at approximately 25 km above Earth. The stratospheric ozone concentration changes throughout the year as stratospheric circulation changes with the seasons. Natural events such as volcanoes and solar flares can produce changes in ozone concentration, but man-made changes are of the greatest concern.

To Top


ozone mini-hole(s)












Rapid, transient, polar-ozone depletion. These depletions, which take place over a 50-kilometer squared area, are caused by weather patterns in the upper troposphere. The decrease in ozone during a mini-hole event is caused by transport, with no chemical depletion of ozone. However, the cold stratospheric temperatures associated with weather systems can cause clouds to form that can lead to the conversion of chlorine compound from inert to reactive forms. These chlorine compounds can then produce longer-term ozone reductions after the mini-hole has passed.

To Top

p


P           P           P


photosynthesis





The process by which green plants use light to synthesize organic compounds from carbon dioxide and water. In the process oxygen and water are released. Increased levels of carbon dioxide can increase net photosynthesis in some plants. Plants create a very important reservoir for carbon dioxide.

To Top


pollutant








Strictly, too much of any substance in the wrong place or at the wrong time is a pollutant. More specifically, atmospheric pollution may be defined as the presence of substances in the atmosphere, resulting from man-made activities or from natural processes that cause adverse effects to human health, property, and the environment.

To Top

q


Q           Q           Q


To Top

r


R           R           R


radiation



Energy transfer in the form of electromagnetic waves or particles that release energy when absorbed by an object.

To Top


radioactive


Giving off or capable of giving off radiant energy in the form of particles or rays, as in alpha, beta, and gamma rays.

To Top


rain forest

















An evergreen woodland of the tropics distinguished by a continuous leaf canopy and an average rainfall of about 100 inches per year. Rain forests play an important role in the global environment. The Earth sustains life because of critical balances and interactions among many factors. Were there not processes at work that limit the effects of other essential processes, Earth would become uninhabitable. Destruction of tropical rain forests reduces the amount of leaf area in the tropics, and consequently the amount of carbon dioxide absorbed, causing increases in levels of carbon dioxide and other atmospheric gases. It is estimated that cutting and burning of tropical forests contributes about 20 percent of the carbon dioxide added to the atmosphere each year. The World Resources Institute and the International Institute for Environment and Development have reported that the world's tropical forests are being destroyed at the rate of fifty-four acres per minute, or twenty-eight million acres lost annually. Rain forest destruction also means the loss of a wide spectrum of biological life, erosion of soil, and possible desertification.

To Top

s


S           S           S


salinity



The degree of salt in water. The rise in sea level due to global warming would result in increased salinity of rivers, bays and aquifers. This would affect drinking water, agriculture and wildlife.

To Top


solar radiation






Energy received from the sun is solar radiation. The energy comes in many forms, such as visible light (that which we can see with our eyes). Other forms of radiation include radio waves, heat (infrared), ultraviolet waves, and x-rays. These forms are categorized within the electromagnetic spectrum.

To Top


Sun



 
























The closest star to Earth (149,599,000 km away on average). The sun dwarfs the other bodies in the solar system, representing approximately 99.86 percent of all the mass in the solar system. One hundred and nine Earths would be required to fit across the Sun's disk, its interior could hold over 1.3 million Earths.

The source of the Sun's energy is the nuclear reactions that occur in its core. There, at temperatures of 15 million degrees Celsius (27 million degrees Fahrenheit) hydrogen atom nuclei, called protons, are fused and become helium atom nuclei. The energy produced through fusion at the core moves outward, first in the form of electromagnetic radiation called photons. Next, energy moves upward in photon heated solar gas--this type of energy transport is called convection. Convective motions within the solar interior generate magnetic fields that emerge at the surface as sunspots and loops of hot gas called prominences. Most solar energy finally escapes from a thin layer of the Sun's atmosphere called the photosphere--the part of the Sun observable to the naked eye.

The sun appears to have been active for 4.6 billion years and has enough fuel for another 5 billion years or so. At the end of its life, the Sun will start to fuse helium into heavier elements and begin to swell up, ultimately growing so large that it will swallow Earth. After a billion years as a 'red giant,' it will suddenly collapse into a 'white dwarf.' It may take a trillion years to cool off completely.

To Top

t


T           T           T


temperature







A measure of the energy in a substance. The more heat energy in the substance, the higher the temperature. The Earth receives only one two-billionth of the energy the sun produces. Much of the energy that hits the Earth is reflected back into space. Most of the energy that isn't reflected is absorbed by the Earth's surface. As the surface warms, it also warms the air above it.

To Top


thunder













Local storm resulting from warm humid air rising in an unstable environment. Air may start moving upward because of unequal surface heating, the lifting of warm air along a frontal zone, or diverging upper-level winds (these diverging winds draw air up beneath them). The scattered thunderstorms that develop in the summer are called air-mass thunderstorms because they form in warm, maritime tropical air masses away from other weather fronts. More violent severe thunderstorms form in areas with a strong vertical wind shear that forces the updraft into the mature stage, the most intense stage of the thunderstorm. Severe thunderstorms can produce large hail, forceful winds, flash floods, and tornadoes.

To Top


tornado













A twisting, spinning funnel of low pressure air. The most unpredictable weather event, tornadoes are created during powerful thunderstorms. As a column of warm air rises, air rushes in at ground level and begins to spin. If the storm gathers energy, a twisting, spinning funnel develops. Because of the funnel's cloud and rain composition and the dust, soil, and debris it draws up, the funnel appears blackish in color. The most energetic storms result in the funnel touching the ground. In these tornadoes, the roaring winds in the funnel can reach 300 mph, the strongest winds on Earth. Funnels usually travel at 20 to 40 mph, moving toward the northeast. When tornadoes form over lakes or oceans they suck water into the funnel cloud and are called waterspouts.

To Top


transpiration




The process in plants by which water is taken up by the roots and released as water vapor by the leaves. The term can also be applied to the quantity of water thus dissipated.

To Top


troposphere




The lower atmosphere, to a height of 8-15 km above Earth, where temperature generally decreases with altitude, clouds form, precipitation occurs, and convection currents are active. See atmosphere.

To Top


tropospheric ozone (O3)



Ozone that is located in the troposphere and plays a significant role in the greenhouse gas effect and urban smog. See Ozone for more details.

To Top

u


U           U           U


ultraviolet radiation











The energy range just beyond the violet end of the visible spectrum. Although ultraviolet radiation constitutes only about 5 percent of the total energy emitted from the sun, it is the major energy source for the stratosphere and mesosphere, playing a dominant role in both energy balance and chemical composition.

Most ultraviolet radiation is blocked by Earth's atmosphere, but some solar ultraviolet penetrates and aids in plant photosynthesis and helps produce vitamin D in humans. Too much ultraviolet radiation can burn the skin, cause skin cancer and cataracts, and damage vegetation.

To Top


UV



Ultraviolet. See ultraviolet radiation.

To Top

v


V           V           V


vernal equinox


The beginning of spring in the Northern Hemisphere. The time/day that the sun crosses the equatorial plane going from south to north.

To Top


volcano














A naturally occurring vent or fissure at the Earth's surface through which erupt molten, solid, and gaseous materials. Volcanic eruptions inject large quantities of dust, gas, and aerosols into the atmosphere. A major component of volcanic clouds is sulfur dioxide, a strong absorber of ultraviolet radiation. Chemical interactions between sulfur dioxide and water cause sulfuric acid aerosols which can scatter some of the incident solar radiation back to space, thus causing a global cooling effect. For example, Mt. Pinatubo in the Philippines erupted in June 1991, and in the following year the global surface temperature was observed to decrease by about 0.3 degrees C.

To Top

w


W           W           W


weather

Atmospheric condition at any given time or place. Compare with climate.

To Top


wind








A natural motion of the air, especially a noticeable current of air moving in the atmosphere parallel to the Earth's surface. Winds are caused by unequal heating and cooling of the Earth and atmosphere due to absorbed, incoming solar radiation and infrared radiation lost to space--as modified by such effects as the Coriolis force, the condensation of water vapor, the formation of clouds, the interaction of air masses and frontal systems, friction over land and water, etc.

To Top


wind chill







The wind can reduce significantly the amount of heat your body retains. The following wind chill chart does not take into account such variables as type of clothing worn, amount of exposed flesh, and physical condition, all of which would alter body heat.

To Top

x


X           X           X


To Top

y


Y           Y           Y


To Top

z


Z           Z           Z


zooplankton

Animal plankton. Small herbivores that float or drift near the surface of aquatic systems and that feed on plant plankton (phytoplankton and nanoplankton).

To Top


Children of the Earth United would like to thank
NASA's Earth Observatory for freely sharing their educational materials.



Back to Earth Issues Page

Glossary of Environmental, Ecology, Green Science Terms:  Green / Earth Issues for Kids
Presented by Children of the Earth United, Green -
Environmental Education for Kids, Teachers and Families.

Return to Previous Page

 

 


You can help us raise money by clicking this link before you buy Amazon.com products.  Children of the Earth United will receive about 6% of the sale price.  There is no cost to you and the price you pay is exactly the same. Click here to find our more.
 

.  .  .  .
 

Creative Kids        Amazing Animals           Powerful Plants           Native Wisdom 
Eco-Careers             Earth Issues             Awesome Activities            Great Books         
Nature Programs          We Give Thanks         You're Invited          About Us
Sign Up For Our Email Newsletters     

.  .  .  .

Comments, Feedback, Questions ? - Contact Us   

Children of the Earth United is a 501(c)(3) non profit organization - run by volunteers and entirely supported by donations.  If you would like to support our efforts, please help us out by sending a tax deductible donation to Children of the Earth United ~ P.O. Box 258035 ~ Madison, WI  53725.  
.  .  .  .    


 

Children of the Earth United
~ Environmental Education for Kids of all Ages ~

Learn about Animals, Plants, Ecology, Nature, Environmental Issues, Native Wisdom, Nature Centers, Activities, and much more at www.childrenoftheearth.org !


 

Copyright 1999 - 2015 Children of the Earth United. All Rights Reserved.